An ac-coupled post-SQUID semiconductor amplifier

Mikko Kiviranta, (*) Antti Virtanen, Heikki Seppä, Jari S. Penttilä, Juha Hassel and Panu Helistö VTT Microsensing, 02150 Espoo, Finland; and (*) GE Healthcare Technologies, 04301 Tuusula, Finland

Motivation: frequency-domain multiplexing

Noise temperature

Noise matching $Z_n =$ resistance

At SQUID output $T_n \sim 2.5 \times$ bath temperature

Single SQUID at 4.2K: T_n ~10K room-temp amplifier doable but difficult **SQUID** array at 4.2K: same T_n as single SQUID, just different R_n Single SQUID at 0.4K: T_n~1K room-temp amplifier very difficult Single SQUID read with single SQUID: 2nd SQUID limits dynamic range Single SQUID read with a k-SQUID array:

- Choose coupling such that one Φ_0 in 1st SQUID corresponds to Φ_0 in each SQUID in the array
- Then the dominant non-linearity is the same for 1st and 2nd SQUID...
- ...but T_n at the array output is k times the T_n at the 1st SQUID output.

Candidates for the semiconductor device

2SK147, IF1320: has been used previously

- The largest C_g g_m ratio we found: BF862 T_n = 5.5 K, Z_n = 4.2 k Ω @ 10 MHz (theory
- Must couple devices in parallel, use transformer to match source resistance

HEMTs / MESFETs

Our JFET amplifier prototype

Simplified schematics

BFP650: very low $R_{BB} \sim 1 \Omega$

Tn \sim 50 K, Zn \sim 90 Ω ,

Noise temperature at 5 MHz

What about a cryogenic amplifier?

- Short feedback to the SQUID input
- ⇒ large dynamic range at a large bandwidth
- Johnson noise from cabling becomes negligible

We have some promising 4.2K results

A quick functionality check for semiconductor device D2

A quick functionality check for semiconductor device D5

- 7 mW bias point
 3 MHz cutoff due to cable capacitance
 With matched circuits >1 GHz bandwidth feasible
 Theoretical estimate for current noise 3 pA/rtHz. Observed load dependence is consistent with u_n = 0.135 nV/rtHz
- Getting rid of the 250 kHz interference may lead to lower noise
- 1.5 mW bias point
 Lower cutoff, due to higher cable-driving impedance.

